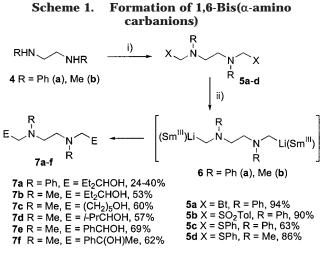
Generation and Reactions of Nonstabilized Bis(α-amino carbanions)

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

Received March 2, 1998

The development of new strategies for the single-step achievement of multiple reactions can allow the efficient construction of complex molecules. Among available strategies, the utility of dicarbanions has recently emerged.¹ Bis(α -amino carbanions) lacking stabilizing groups are rare because there are only a few methodologies available for the preparation of nonstabilized α -amino carbanions in general.^{2–4} Previously, successful preparations of such bis-derivatives have been limited to (i) direct double lithiation of bis(dimethylamino)methane (**1a**) by *t*-BuLi to give 1,5-dicarbanion **1b**,⁵ (ii) lithium-

$\overset{\text{XCH}_2 \ N}{{\underset{{}{\underset{{}{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{}}{\underset{\underset{i}}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{i}}$	CH_2X $CH_3 - N$ CH_2X	XCH ₂ -NN-CH ₂ X
1a X = H	2a X = SnBu ₃	3a X = SPh
1b X = Li	2b X = Li	3b X = Li


metal exchange of organotin compound **2a** to form 1,3dicarbanions **2b**,⁶ and (iii) reductive C–S bond cleavage of α -thioamine **3a** to prepare 1,6-dicarbanion **3b**.⁷ Moreover, only silyl chlorides^{5–7} and deuterium oxide⁵ were employed as electrophiles in the reported reactions of bis-(α -amino carbanions) **1b**, **2b**, and **3b**.

We recently demonstrated that readily available N-(α -aminoalkyl)benzotriazoles⁸ and tosylmethylamines^{9a} are advantageous and versatile precursors of nonstabilized α -amino carbanions. We have now found that our previous and other methods^{7,9b,10} can be extended to the

- (1) (a) Thompson, C. M. *Dianion Chemistry in Organic Synthesis*; CRC Press: Boca Raton, FL, 1994. (b) Marek, I.; Normant, J.-F. *Chem. Rev.* **1996**, *96*, 3241.
- (2) For recent reviews of the generation of nonstabilized α -aminocarbanions, see: (a) Katritzky, A. R.; Qi, M. *Tetrahedron* **1998**, *54*, 2647. (b) Kessar, S. V.; Singh, P. *Chem. Rev.* **1997**, *97*, 721.
- (3) Representative reviews on stabilized α -amino carbanions: (a) Beak, P.; Zajdel, W. J.; Reitz, D. B. *Chem. Rev.* **1984**, *84*, 471. (b)

Seebach, D.; Enders, D. Angew. Chem., Int. Ed. Engl. 1975, 14, 15.
 (4) Representative reviews on lithium/element exchange: (a) Kauff-

- (a) Representative reviews on infinitum remember exchange. (a) Rammann, T. *Top. Cur. Chem.* **1980**, *92*, 109. (b) Cohen, T.; Bhupathy, M. Acc. Chem. Res. **1989**, *22*, 152.
 - (5) Karsch, H. H. Chem. Ber. 1996, 129, 483.
- (6) Peterson, D. J.; Ward, J. F. J. Organomet. Chem. 1974, 66, 209.
 (7) Strohmann, C.; Abele, B. C. Angew. Chem., Int. Ed. Engl. 1996, 35, 2378.
- (8) Katritzky, A. R.; Qi, M.; Feng, D.; Nichols, D. A. J. Org. Chem. 1997, 62, 4121.
- (9) (a) Katritzky, A. R.; Feng, D.; Qi, M. J. Org. Chem. 1997, 62,
 (6222. (b) Alonso, D. A.; Alonso, E.; Nájera, C.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 4835.
 (10) (a) Broka, C. A.; Shen, T. J. Am. Chem. Soc. 1989, 111, 2981.
- (10) (a) Broka, C. A.; Shen, T. J. Am. Chem. Soc. 1989, 111, 2981.
 (b) Tsunoda, T.; Fujiwara, K.; Yamamoto, Y.-i.; Itô, S. Tetrahedron Lett. 1991, 32, 1975.

Key: i) for **5a**, BtCH₂OH, toluene, reflux; for **5b**, TolSO₂H, HCHO, MeOH, 0 °C; for **5c**, **d**, PhSH, HCHO, EtOH, reflux; ii) Method A: **5a**, 3-pentanone, Sml₂/THF-HMPA, 0 °C; B: **5a**, 3-pentanone, LiNap, THF, -78 °C; **C: 5b**, 3-pentanone, Sml₂/THF-HMPA, 0 °C; D: **5b**, 3-pentanone, Sml₂/THF-HMPA, 0 °C; C; D: **5b**, 3-pentanone, Sml₂/THF-HMPA, 0 °C; C; C; **5b**, 3-pentanone, Sml₂/THF-HMPA, 0 °C; C; C; **5b**, 3-pentanone, Li/LiBr, THF, -78 °C to rt; F: **5d**, Li/LiBr, THF, 3-pentanone, -78 °C; or G: **5d**, Li/LiBr, THF, -78 °C.

generation of various nonstabilized bis(α -amino carbanions) which can be trapped with a variety of electrophiles.

Results and Discussion

The bis(α -aminobenzotriazole) **5a** was prepared from 1,2-anilinoethane (**4a**), and 1-(hydroxymethyl)benzotriazole (BtCH₂OH) in refluxing toluene in 94% yield. The utilization of **5a** as a formal dicarbanion synthon equivalent and its subsequent reaction with electrophile 2-pentanone was attempted under two different conditions: using (i) SmI₂⁸ and (ii) lithium naphthalene (LiNap) as reducing reagents (Scheme 1).⁷ The first reaction gave product **7a**, expected from a dicarbanion intermediate (**6a**), together with a byproduct deriving from a C–N(Ph) bond cleavage of the starting **5a** due to the presence of two C–N bonds.⁸ The use of LiNap as reducing reagent for **5a** resulted in a complex mixture.


To avoid the low C–N bond selectivity in the above reaction, the bis(α -sulfonylamine) **5b** was prepared from **4a**, toluenesulfonic acid, and formaldehyde in 90% yield (Scheme 1) by using a modified version of a previously published method.¹¹ However, reaction of **5b** with 3-pentanone in the presence of SmI₂/THP (tetrahydropyran)–HMPA^{9a} gave only 31% bis(α -amino alcohol) **7a** (24% of **7a** was isolated when SmI₂/THF–HMPA was used). A somewhat higher yield (40%) of **7a** was afforded when bis(α -phenylthioamine) **5c** was treated with lithium/ lithium bromide¹² and 3-pentanone. Compound **5c** was synthesized from **4a** in a fashion similar to the literature methods.¹³ In all the reactions of **5b**, **c**, 1,3-diphenylimi-

[§] Current address: Trega Biosciences, Inc., 9880 Campus Point Drive, San Diego, CA 92121.

⁽¹¹⁾ Bäder, E.; Hermann, H. D. Chem. Ber. 1955, 88, 41.

⁽¹²⁾ It is noteworthy to point out that the use of Li/LiBr⁸ instead of LiNap^{7, 10a} or lithium di-*tert*-butylbiphenyl (LiDBB)^{10b} avoids the introduction of equivalent amount of aromatic hydrocarbons, which have to be removed by chromatography, into the reaction system.

^{(13) (}a) Grillot, G. F.; Felton, H. R.; Garrett, B. R.; Greenberg, H.;
Green, R.; Clementi, R.; Moskowitz, M. J. Am. Chem. Soc. 1954, 76, 3969. (b) Pollard, C. B.; Butler, D. E. J. Org. Chem. 1961, 26, 600.

dazolidine (8) was a major byproduct. The formation of compound 8 probably involved an intramolecular cyclization of **5b,c** to form an ammonium salt 9, which was hydrolyzed to give imidazolidine 8 (eq 1).

$$5b,c \longrightarrow \begin{bmatrix} PhN & Ph \\ PhN & X \end{bmatrix} \longrightarrow PhN & (1)$$

$$9 X = SO_2 Tol, SPh$$

We believe that the low yields of the above reactions are due to the low stability of the expected dicarbanion intermediate **6a**. As alkyl-substituted α -amino carbanions are more stable than their aryl-substituted counterparts,¹⁴ we prepared bis(α -thioamine) **5d**. We found that **5d** reacted easily with electrophiles, either in the presence of Li/LiBr or using a two-step procedure, to give **7b**-**f** in good yields (Scheme 1, method G).

We successfully extended this reaction to the generation of nonstabilized α -amino 1,7-dicarbanion 12 from bis-(α -thioamine) 11 (Scheme 2). Preformation of the nonstabilized α -amino dicarbanion 12 significantly expanded the scope of the electrophiles that could be utilized in this reaction to include carbonyl compounds, isocyanates, and chlorotrimethylsilane. Thus, bis(β -hydroxyamines) 13, bis(β -aminoamide) 14, and bis(β -aminosilane) 15 were synthesized in 54–66% yields. For the *N*-alkyl-substituted α -amino dicarbanion, bis(α -aminobenzotriazole) 16 can also be used as the precursor; compound 13a was prepared from 16 in 32% yield.

We previously found that *N*-(α -aminoalkyl)benzotriazoles, due to their ready availability, moderate reaction conditions, and easy workup, are better precursors for the nonstabilized α -amino carbanions⁸ than either α -thioamines, for which stronger reducing reagents (e.g. LiNap) have to be used,^{7,10} or α -sulfonylamines, for which only *N*-phenyl-substituted α -amino carbanions can be prepared.⁹ However, for the bifunctional nonstabilized bis(α -amino carbanions) now studied it transpires that bis(α -thioamines) are the best precursors. The two-step approach now reported gives access to various multifunctionalized organic compounds in one-pot reactions.

Experimental Section

For general information, see our previous papers.^{8,9a}

N,*N*'-Bis(benzotriazolylmethyl)-*N*,*N*'-diphenylethylenediamine (5a). A solution of 1-(hydroxymethyl)benzotriazole (2.98 g, 20 mmol) and 1,2-dianilinoethane (2.12 g, 10 mmol) in toluene (50 mL) was heated to reflux for 6 h, using a Dean-Stark trap to remove the produced water. After evaporation of the solvent, the crude product was dried under vacuum to give the title compound in 94% yield: white solid; mp 151–154 °C; ¹H NMR (benzotriazol-1-yl (Bt¹) and benzotriazol-2-yl (Bt²) isomers, peaks corresponding to the major (90%) Bt¹Bt¹ isomer reported here) δ 3.71 (s, 4H), 6.02 (s, 4H), 6.80–7.15 (m, 7H), 7.16–7.50 (m, 9H), 7.90–8.10 (m, 2H); ¹³C NMR δ 47.3, 66.0, 109.8, 116.7, 119.9, 121.0, 123.9, 127.5, 129.8, 132.6, 146.1, 146.4. Anal. Calcd for C₂₈H₂₆N₈: C, 70.87; H, 5.52; N, 23.61. Found: C, 70.97; H, 5.55; N, 23.40.

N,N'-**Di(tosylmethyl)-1,2-dianilinoethane (5b).** Aqueous formaldehyde (37%, 1.5 g, 18 mmol) and a solution of the 1,2-dianilinoethane (1.6 g, 7.5 mmol) in methanol (20 mL) were added, in turn, to a solution of *p*-toluenesulfinic acid (2.52 g 16 mmol) in methanol (15 mL) at 0 °C and stirred for 3 h. The precipitate was filtered with suction and dried in a vacuum system to give **5b** in 90% yield: white solid, mp 139–141 °C; ¹H NMR δ 2.38 (s, 6H), 3.66 (s, 4H), 4.65 (s, 4H), 6.68 (d, 4H, *J* = 8.1 Hz), 6.79 (t, 2H, *J* = 7.1 Hz), 7.12 (t, 4H, *J* = 8.0 Hz), 7.66 (d, 4H, *J* = 8.2 Hz); ¹³C NMR δ 21.6, 48.4, 75.4, 114.2, 119.7, 128.7, 129.3, 129.9, 135.5, 145.0, 145.3. Anal. Calcd for C₃₀H₃₂N₂O₄S₂: C, 65.67; H, 5.88; N, 5.11. Found: C, 66.00; H, 5.99; N, 5.18.

N,N'-Dimethyl-*N,N'*-bis[(thiophenyl)methyl]ethylenediamine (5d). Aqueous formaldehyde (37%, 4.87 g, 60 mmol) and thiophenol (4.45 g, 40 mmol) were added, in turn, to a solution of the *N,N*-dimethylethylenediamine (1.78 g, 20 mmol) in methanol (35 mL) at 0 °C and stirred for 1 h and then heated to reflux for 5 h. The precipitate was filtered off with suction, washed with cold EtOH, and dried under vacuum to give 5d in 86% yield: mp 48–50 °C; ¹H NMR δ 2.28 (s, 6H), 2.52 (s, 4H), 4.48 (s, 4H), 7.13–7.29 (m, 6H), 7.74 (d, 4H, *J* = 7.2 Hz); ¹³C NMR δ 40.8, 51.4, 67.5, 126.4, 128.8, 132.0, 137.7. Anal. Calcd for C₁₈H₂₄N₂S₂: C, 65.02; H, 7.27; N, 8.42. Found: C, 64.90; H, 7.34; N, 8.35.

N,*N*′-**Bis**(2-ethyl-2-hydroxybutyl)-1,2-dianilinoethane (7a). Method A or C. A solution of compound 5a or 5b (1.0 mmol) and 3-pentanone (0.22 g, 2.5 mmol) was added to SmI₂ (0.1 N, 5 mmol) in THF/HMPA (20:1) at 0 °C under nitrogen and stirred for 6 h. The reaction was quenched with water and extracted with ether. The organic phase was dried and concentrated to give a residue, which was purified by column chromatography (eluent: hexane/EtOAc/Et₃N) to afford **7a**: white solid, mp 89–90 °C; ¹H NMR δ 0.76 (t, 12H, J = 7.2 Hz), 1.30–1.53 (m, 8H), 1.65 (s, 2H), 3.12 (s, 4H), 3.52 (s, 4H), 6.66 (t, 2H, J = 7.1 Hz), 6.83 (d, 4H, J = 8.3 Hz), 7.15 (t, 4H, J = 7.3 Hz); ¹³C NMR δ 7.8, 29.1, 48.3, 58.6, 76.4, 113.9, 117.4, 129.2, 149.5. Anal. Calcd for C₂₆H₄₀N₂O₂: C, 75.68; H, 9.77; N, 6.79. Found: C, 76.13; H, 9.57; N, 7.13.

General Procedure for the Preparation of 7b–f, 13–15. Method G. Lithium (30% in mineral oil, 0.46 g, 20 mmol) was washed twice with THF under argon and treated with 1,2-dibromoethane (2.3 mmol) in THF (30 mL) for 30 min to form the Li/LiBr suspension. The mixture was cooled to -78 °C, and a THF solution of the diamine derivative (5d or 11, 2 mmol) was added. The reaction mixture was stirred for 2 h, and then an electrophile was added. After 1 h, the mixture was quenched with water at the same temperature and extracted with ethyl acetate. The solvent was removed to give a residue, which was purified by column chromatography on silica gel (eluent: hexane/ EtOAc/Et_sN) to afford the desired product.

N,N'-Dimethyl-*N,N'*-bis(2-ethyl-2-hydroxybutyl)ethylenediamine (7b). 53% yield; colorless oil; ¹H NMR δ 0.86 (t,

⁽¹⁴⁾ Peterson, D. J. J. Am. Chem. Soc. 1971, 93, 4027.

12H, J = 7.4 Hz), 1.33–1.62 (m, 8H), 2.37 (s, 6H), 2.39 (s, 4H), 2.54 (s, 4H), 4.97 (br s, 2H); ¹³C NMR δ 7.8, 28.9, 47.1, 57.7, 63.2, 74.0. Anal. Calcd for $C_{16}H_{36}N_2O_2$: C, 66.62; H, 12.58; N, 9.71. Found: C, 66.53; H, 13.04; N, 9.88.

N,*N* '-Diethyl-*N*,*N* '-bis(2-ethyl-2-hydroxybutyl)-1,3propylenediamine (13a). 61% yield; colorless oil; ¹H NMR δ 0.85 (t, 12H, *J* = 7.5 Hz), 1.01 (t, 6H, *J* = 7.1 Hz), 1.32–1.52 (m, 8H), 1.53–1.68 (m, 2H), 2.36 (s, 4H), 2.45–2.66 (m, 8H), 3.53 (br s, 2H); ¹³C NMR δ 7.9, 11.8, 25.5, 29.8, 49.5, 53.7, 61.0, 72.5. Anal. Calcd for C₁₉H₄₂N₂O₂: C, 69.04; H, 12.81; N, 8.47. Found: C, 69.27; H, 13.29; N, 8.70.

N,*N*′-**Diethyl**-*N*,*N*′-**bis((isopropylcarbamoyl)methyl)**-**1,3-propylenediamine (14):** 58% yield; colorless oil; ¹H NMR δ 1.03 (t, *J* = 7.1 Hz) and 1.20 (t, *J* = 6.6 Hz) (total 6H), 1.02 (d, *J* = 6.4 Hz) and 1.37 (d, *J* = 6.5 Hz) (total 12H), 1.50-1.67 (m, 2H), 2.36-2.70 (m, 8H), 2.99 (s) and 3.36 (s) (total 4H), 3.90-4.17 (m) and 4.40-4.55 (m) (total 2H), 7.10 (d, *J* = 7.8 Hz) and 8.19 (d, *J* = 6.0 Hz) (total 2H); ¹³C NMR δ 12.0 (11.0), 22.6 (22.2), 25.2 (24.1), 40.4 (42.5), 49.0 (47.6), 48.9 (47.2), 52.9 (50.4), 57.9 (58.4), 170.3 (153.8). Anal. Calcd for C₁₇H₃₆N₄O₂: C, 62.16; H, 11.05; N, 17.06. Found: C, 61.61; H, 11.08; N, 16.80. *N,N* '-**Diethyl**-*N,N* '-**bis((trimethylsilyl)methyl)**-1,3**propylenediamine (15):** 54% yield; colorless oil; ¹H NMR δ -0.09 (s, 18H), 0.84 (t, 6H, J = 7.1 Hz), 1.41 (m, 2H), 1.78 (s, 4H), 2.22 (t, 4H, J = 7.3 Hz), 2.31 (q, 4H, J = 6.9 Hz); ¹³C NMR δ -1.2, 11.5, 24.2, 45.4, 50.7, 55.1; HRMS (FAB) (*m/e*) calcd for C₁₅H₃₈N₂Si₂ + H 303.2652, found 303.2653.

Acknowledgment. This work was supported in part by the National Science Foundation (Grant CHE-9629854).

Supporting Information Available: Text providing fully detailed analytical data (¹H and ¹³C NMR and microanalysis) for compounds **5c**, **7c**–**f**, **8**, **11**, **13b**, and **16** (3 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO980395T